You are given N counters, initially set to 0, and you have two possible operations on them:
A non-empty array A of M integers is given. This array represents consecutive operations:
For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
Write a function:
function solution(N, A);
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
Result array should be returned as an array of integers.
For example, given:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the function should return [3, 2, 2, 4, 2], as explained above.
Write an efficient algorithm for the following assumptions:
function solution(N, A) {
let result = new Array(N).fill(0);
for (let i = 0; i < A.length; i++) {
if (A[i] === N + 1) {
result = new Array(N).fill(Math.max(...result));
} else {
result[A[i] - 1] += 1;
}
}
return result;
}
function solution(N, A) {
let counters = new Array(N).fill(0);
let maxVal = 0;
let lastMax = 0;
for (var j = 0; j < A.length; j++) {
if (A[j] > N) {
lastMax = maxVal;
} else {
let currentMax = Math.max(lastMax, counters[A[j] - 1]);
counters[A[j] - 1] = currentMax += 1;
maxVal = Math.max(counters[A[j] - 1], maxVal);
}
console.log(lastMax, maxVal, counters);
}
for (var l = 0; l < N; l++) {
counters[l] = Math.max(counters[l], lastMax);
}
return counters;
}