A non-empty array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P < Q < N, is called a slice of array A (notice that the slice contains at least two elements). The average of a slice (P, Q) is the sum of A[P] + A[P + 1] + … + A[Q] divided by the length of the slice. To be precise, the average equals (A[P] + A[P + 1] + … + A[Q]) / (Q − P + 1).
For example, array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
contains the following example slices:
The goal is to find the starting position of a slice whose average is minimal.
Write a function:
function solution(A);
that, given a non-empty array A consisting of N integers, returns the starting position of the slice with the minimal average. If there is more than one slice with a minimal average, you should return the smallest starting position of such a slice.
For example, given array A such that:
A[0] = 4
A[1] = 2
A[2] = 2
A[3] = 5
A[4] = 1
A[5] = 5
A[6] = 8
the function should return 1, as explained above.
Write an efficient algorithm for the following assumptions:
function solution(A) {
let result = {};
for (let i = 0; i < A.length - 2; i++) {
for (let j = i + 2; j < A.length; j++) {
let s = A.slice(i, j);
let key = s.reduce((sum, cur) => sum + cur) / s.length;
result[key] = i;
}
}
return result[Math.min(...Object.keys(result))];
}
function solution(A) {
var start = 0;
var currentSum = A[0] + A[1];
var minAvgSlice = currentSum / 2;
for (var i = 2; i < A.length; i++) {
currentSum += A[i];
var newAvg = currentSum / 3;
if (newAvg < minAvgSlice) {
minAvgSlice = newAvg;
start = i - 2;
}
currentSum -= A[i - 2];
newAvg = currentSum / 2;
if (newAvg < minAvgSlice) {
minAvgSlice = newAvg;
start = i - 1;
}
}
return start;
}