A non-empty array A consisting of N integers is given.
A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
is a permutation, but array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
is not a permutation, because value 2 is missing.
The goal is to check whether array A is a permutation.
Write a function:
function solution(A);
that, given an array A, returns 1 if array A is a permutation and 0 if it is not.
For example, given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
the function should return 1.
Given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
the function should return 0.
Write an efficient algorithm for the following assumptions:
function solution(A) {
A.sort((sm, bg) => sm - bg);
for (let i = 0; i < A.length - 1; i++) {
if (A[i] + 1 !== A[i + 1]) return 0;
}
return 1;
}
function solution(A) {
if (A.length < 2) return 0;
A.sort((sm, bg) => sm - bg);
for (let i = 0; i < A.length - 1; i++) {
if (A[i] + 1 !== A[i + 1]) return 0;
}
return 1;
}
function solution(A) {
A.sort((a, b) => a - b);
let isPermutation = A.every((n, i) => n === i + 1);
return ~~isPermutation;
}